Rhodobacter sphaeroides mutants overexpressing chlorophyllide a oxidoreductase of Blastochloris viridis elucidate functions of enzymes in late bacteriochlorophyll biosynthetic pathways
نویسندگان
چکیده
In previous studies we have demonstrated that chlorophyllide a oxidoreductases (CORs) from bacteriochlorophyll (BChl) a-producing Rhodobacter species and BChl b-producing Blastochloris viridis show distinct substrate recognition and different catalytic hydrogenation reactions, and that these two types of CORs therefore cause committed steps for BChls a and b biosynthesis. In this study, COR genes from B. viridis were incorporated and overexpressed in a series of Rhodobacter sphaeroides mutants. We found that the following two factors are essential in making R. sphaeroides produce BChl b: the loss of functions of both intrinsic COR and 8-vinyl reductase (BciA) in the host R. sphaeroides strain; and expression of the BchYZ catalytic components of COR from B. viridis, not the complete set of COR (BchXYZ), in the host strain. In addition, we incorporated bchYZ of B. viridis into the R. sphaeroides mutant lacking BchJ and BciA, resulting in the strain accumulating both BChl a and BChl b. This is the first example of an anoxygenic photosynthetic bacterium producing BChls a and b together. The results suggest that BchJ enhances activity of the intrinsic COR. The physiological significance of BchJ in pigment biosynthetic pathways will be discussed.
منابع مشابه
An unexpectedly branched biosynthetic pathway for bacteriochlorophyll b capable of absorbing near-infrared light
Chlorophyllous pigments are essential for photosynthesis. Bacteriochlorophyll (BChl) b has the characteristic C8-ethylidene group and therefore is the sole naturally occurring pigment having an absorption maximum at near-infrared light wavelength. Here we report that chlorophyllide a oxidoreductase (COR), a nitrogenase-like enzyme, showed distinct substrate recognition and catalytic reaction be...
متن کاملIdentification of an 8-vinyl reductase involved in bacteriochlorophyll biosynthesis in Rhodobacter sphaeroides and evidence for the existence of a third distinct class of the enzyme.
The purple phototrophic bacterium Rhodobacter sphaeroides utilises bacteriochlorophyll a for light harvesting and photochemistry. The synthesis of this photopigment includes the reduction of a vinyl group at the C8 position to an ethyl group, catalysed by a C8-vinyl reductase. An active form of this enzyme has not been identified in R. sphaeroides, but its genome contains two candidate ORFs (op...
متن کاملElucidation of the preferred routes of C8-vinyl reduction in chlorophyll and bacteriochlorophyll biosynthesis
Most of the chlorophylls and bacteriochlorophylls utilized for light harvesting by phototrophic organisms carry an ethyl group at the C8 position of the molecule, the product of a C8-vinyl reductase acting on a chlorophyll/bacteriochlorophyll biosynthetic precursor. Two unrelated classes of C8-vinyl reductase are known to exist, BciA and BciB, found in the purple phototroph Rhodobacter sphaeroi...
متن کاملA second nitrogenase-like enzyme for bacteriochlorophyll biosynthesis: reconstitution of chlorophyllide a reductase with purified X-protein (BchX) and YZ-protein (BchY-BchZ) from Rhodobacter capsulatus.
In most photosynthetic organisms, the chlorin ring structure of chlorophyll a is formed by the reduction of the porphyrin D-ring by the dark-operative nitrogenase-like enzyme, protochlorophyllide reductase (DPOR). Subsequently, the chlorin B-ring is reduced in bacteriochlorophyll biosynthesis to form a bacteriochlorin ring structure. Phenotypic analysis of mutants lacking one of three genes, bc...
متن کاملCompetitive inhibitions of the chlorophyll synthase of Synechocystis sp. strain PCC 6803 by bacteriochlorophyllide a and the bacteriochlorophyll synthase of Rhodobacter sphaeroides by chlorophyllide a.
The photosynthetic growth of Synechocystis sp. strain PCC 6803 is hampered by exogenously added bacteriochlorophyllide a (Bchlide a) in a dose-dependent manner. The growth inhibition caused by Bchlide a, however, is relieved by an increased level of exogenously added chlorophyllide a (Chlide a). The results are explained by the competitive inhibition of chlorophyll synthase by Bchlide a, with i...
متن کامل